7 research outputs found

    Universality in the flooding of regular islands by chaotic states

    Full text link
    We investigate the structure of eigenstates in systems with a mixed phase space in terms of their projection onto individual regular tori. Depending on dynamical tunneling rates and the Heisenberg time, regular states disappear and chaotic states flood the regular tori. For a quantitative understanding we introduce a random matrix model. The resulting statistical properties of eigenstates as a function of an effective coupling strength are in very good agreement with numerical results for a kicked system. We discuss the implications of these results for the applicability of the semiclassical eigenfunction hypothesis.Comment: 11 pages, 12 figure

    Avoided intersections of nodal lines

    Full text link
    We consider real eigen-functions of the Schr\"odinger operator in 2-d. The nodal lines of separable systems form a regular grid, and the number of nodal crossings equals the number of nodal domains. In contrast, for wave functions of non integrable systems nodal intersections are rare, and for random waves, the expected number of intersections in any finite area vanishes. However, nodal lines display characteristic avoided crossings which we study in the present work. We define a measure for the avoidance range and compute its distribution for the random waves ensemble. We show that the avoidance range distribution of wave functions of chaotic systems follow the expected random wave distributions, whereas for wave functions of classically integrable but quantum non-separable wave functions, the distribution is quite different. Thus, the study of the avoidance distribution provides more support to the conjecture that nodal structures of chaotic systems are reproduced by the predictions of the random waves ensemble.Comment: 12 pages, 4 figure

    Casimir force between integrable and chaotic pistons

    Full text link
    We have computed numerically the Casimir force between two identical pistons inside a very long cylinder, considering different shapes for the pistons. The pistons can be considered as quantum billiards, whose spectrum determines the vacuum force. The smooth part of the spectrum fixes the force at short distances, and depends only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force, coming from the oscillating part of the spectrum which is related to the classical dynamics of the billiard, are qualitatively different for classically integrable or chaotic systems. We have performed a detailed numerical analysis of the corresponding Casimir force for pistons with regular and chaotic classical dynamics. For a family of stadium billiards, we have found that the correcting part of the Casimir force presents a sudden change in the transition from regular to chaotic geometries.Comment: 13 pages, 10 figure

    Wavepacket Dynamics in Nonlinear Schrödinger Equations

    No full text
    International audienceCoherent states play an important role in quantum mechanics because of their unique properties under time evolution. Here we explore this concept for one-dimensional repulsive nonlinear Schrödinger equations, which describe weakly interacting Bose-Einstein condensates or light propagation in a nonlinear medium. It is shown that the dynamics of phase-space translations of the ground state of a harmonic potential is quite simple: the centre follows a classical trajectory whereas its shape does not vary in time. The parabolic potential is the only one that satis?fies this property. We study the time evolution of these nonlinear coherent states under perturbations of their shape, or of the confi?ning potential. A rich variety of e?ects emerges. In particular, in the presence of anharmonicities, we observe that the packet splits into two distinct components. A fraction of the condensate is transferred towards uncoherent high-energy modes, while the amplitude of oscillation of the remaining coherent component is damped towards the bottom of the well
    corecore